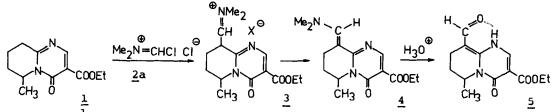
NITROGEN BRIDGEHEAD COMPOUNDS PART 12¹. THE REACTION OF THE ETHYL 6-METHYL-4--OXO-6,7,8,9-TETRAHYDRO-4H-PYRIDO [1,2-a] PYRIMIDINE-3-CARBOXYLATE WITH IMINIUM CHLORIDES.

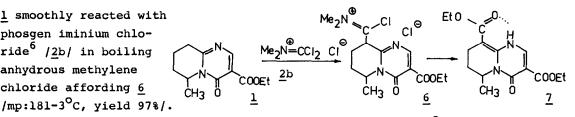
István Hermecz^a, István Bitter^{bl}, Ágnes Horváth^a, Gábor Tóth^{b2}, Zoltán Mészáros^a

a./ CHINOIN Pharm. and Chem. Works, H-1325 Budapest, P.O.Box 110, Hungary

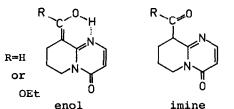

bl./ Technical University; Department of Organic Chemical Technology

b2./ NMR Laboratory of the Institute for General and Analytical Chemistry H-1111 Budapest, Gellért tér 4. Hungary

The 9-formyl- and 9-ester derivatives (5,9) can easily be prepared from the title pyrido [1,2-a] pyrimidine (1) with iminium chlorides (2a,b) via the 9-/dimethyl--iminium-methyl/-derivatives (3,6).


Pyrido [1,2-a] pyrimidines have increasing pharmacological significance². Earlier we reported³ that the title compound $\underline{1}$ contains an activated methylene group in the 9-position. This observation offers the possibility of further chemical modification of the parent pyrido-pyrimidines of type $\underline{1}$ introducing different synthones into the 9-position. In this way we aimed to obtain new derivatives, possibly with favourable pharmacological properties.

We have investigated the reactivity of the pyrido-pyrimidine $/\frac{1}{1}$ towards iminium-chlorides $/\frac{2}{2}a, b/$. $\frac{1}{2}$ with DMF and COCl₂ /molar ratio=1:1:1/ gave $\frac{3}{2}$ in boiling anhydrous methylene chloride. Yield 93 %. /X=Cl mp:211^oC decomp./ The 9--amino-methylene derivative $/\frac{4}{4}$ was obtained from $\frac{3}{2}$ with aqueous NaOAc. Yield 80%. $\frac{4}{2}$ was also prepared treating $\frac{1}{1}$ /l mól/ with POCl₃ /2 mol/ and DMF /10 mol/ at ambient temperature for 2 hrs; yield 78%. [$\frac{4}{2}$ mp:136-7^oC /EtOH/; uv /EtOH/: λ_{max} 397 /lg ϵ 4,68/, 299 inf. /3,43/, 275 /3,49/, 230nm /4,23/].


According to ¹H-NMR the 9-amino-methylene derivative /<u>4</u>/ exists in CDCl₃-DMSO-d₆ only as the E isomer [$\delta_{Me_2N-CH}=8,31ppm$, triplett, ${}^{4}J_{=CH,C(8)H_2}=1Hz$]. The 6-methyl group is in quasiaxial position /J_{6e7e} $\approx J_{6e7a} \approx 3Hz$ / because of 1,3-allylic strain^{4,5}.

The 9-formyl-derivative $\frac{5}{[mp:130-1]^{O}C}$ /EtOH/; yield 81%; uv /EtOH/ λ_{max} 358 /lgc4,34/, 315 inf. /3,86/, 265 /3,49/, 223nm /4,20/] was formed from <u>3</u> with water or from <u>4</u> with 5% aqueous HCl at 50^OC.

<u>6</u> treated with EtOH and NaOAc gave the 9-ester /7/ mp:144-6^OC, yield 71%; uv /EtOH/ λ_{max} 335 /lge 4,11/, 298nm /4,35/ .

Compounds 5 and 7 may exist in three tautomeric forms: enol--imine--enamine.

Recently the ethyl=2-methyl=4-oxo--tetrahydro-4H-pyrido [1,2-a] pyrimidine-9-carboxylate^{7,8} and the 2-phenyl derivative⁸ was found to exist in CDCl₃ and in DMSO-d₆ as a 20:80 mixture of the imine--enamine tautomers. With com-

pounds 5 and 7 only the enamine tautomer could be detected in both solvents. The C(2)H proton gave rise to a doublet with $J_{N(1)H-C(2)H}=5$ and 7Hz, for 5 and 7 respectively. The enamine structure is stabilized by strong intramolecular hydrogene bonding $/\delta_{NH}=14$, lppm for 5 and 11,52ppm for 7/. The 6-methyl group is quasiaxial in both compounds.

enamine

n

These synthones can be useful also for protecting the 9-methylene group of compounds of type $\underline{1}$. The formyl derivative $\underline{5}$ treated with 5% HCl readily and nearly quantitatively retransforms into the parent $\underline{1}$. The formyl and the ester groups can also be removed by treatment with 5% NaOH, when after acidification the 3-carboxyl derivative of $\underline{1}$ is gained.

¹ H-NMR Chemical shifts, δppm, /Intensity/ JEOL-PS-100 /in CDCl ₃ -TMS/										-TMS /
Com- pound	2-н	6-н	7-CH ₂	8-CH ₂	6-Me	1-NH	=CH-	-0CH ₂ -	Me	NMe2
			1,6-2,05m /2H/							
<u>5</u>	8,23d ^b /1H/	5,00m /1H/	1,5-2,10m /2H/	2,4-2,85m /2H/	1,25d /3H/	14,5br /1H/	8,92d ^C /1H/	4,23q /2H/	1,42t /3H/	-
<u>7</u>			1,55-2,1m /2H/					4,26q 4,31q /2x2H/	1,40t	-
			2			5				

a/ ${}^{4}J_{CH-C(8)H_{2}} \approx 1Hz$; b/ ${}^{3}J_{C(2)H-N(1)H} \approx 5Hz$; c/ ${}^{5}J_{CH-N(1)H} \approx 1Hz$; d/ ${}^{3}J_{C(2)H-N(1)H} \approx 7Hz$ REFERENCES: 1./ Part 11: I. Hermecz et al.:Tetrahedron Lett. in press; 2a./ J. Knoll, S. Fürst and Z. Mészáros: Arzneim.Forsch. /Drug Res./ 1971,21,719; b./ J. Knoll, Z. Mészáros and G. Zsila: ibid. in press; c./ I. Hermecz et al.:ibid. in press; d./ P.F. Juby: 4.122.274 USA patent; 3a./ Z. Mészáros et al.:Arzneim. Forsch. /Drug Res./ 1972,22,815; b./ S. Náray-Szabó, I. Hermecz and Z. Mészáros: J.C.S. Perkin I <u>1974,1753; 4./</u> F. Johnson: Chem.Rev. 1968,68,375; 5./ G. Tóth, I. Hermecz and Z. Mészáros: in press; 5./ H.G.Viehe and Z. Janousek: Angew.Chem. 1971; 83,614; 7./ H.L. Yale and E.R. Spitzmiller: J. Heterocyclic Chem. 1976,<u>13</u>, 797; 8./ H. Wamnoff and L. Lichtenthäler: Chem.Ber. 1978,<u>111</u>,2813.